Abstract

IntroductionSpot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14.MethodsTumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors.ResultsS14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation.ConclusionsThis study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-014-0481-z) contains supplementary material, which is available to authorized users.

Highlights

  • Spot14 (S14), encoded by the thyroid hormone responsive protein Spot 14 (THRSP) gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland

  • S14 overexpression in the mammary tumor virus (MMTV)-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls

  • This study of the mammary epithelium revealed that S14 expression was associated with lactogenic differentiation, and its expression mirrored the pattern of fatty acid synthesis enzymes, acetyl CoA carboxylase (ACC), ATP-citrate lyase (ACLY) and fatty acid synthase (FASN) during the transition from pregnancy to lactation

Read more

Summary

Introduction

Spot (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. We showed that addition of recombinant S14 to the FASN enzyme in vitro reduces the apparent Km, increases the apparent Vmax, and increases the synthesis of medium chain fatty acids (MCFA) relative to FASN alone [4]. These observations provide a mechanistic explanation for the described biological effects of S14, in the mammary epithelium during lactation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.