Abstract
Several data indicate that hypothalamic fatty acid synthesis pathway plays an important role in the control of food intake and energy expenditure in rodents. However, the confirmation of its physiological relevance in regulation of feeding in human remains incomplete. For fatty acid synthesis pathway to function as regulator of energy balance in human hypothalamus, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and other lipogenic enzymes activities must be present. The presence of FAS in human hypothalamic neurons has been shown by immunohistochemistry, but quantitative studies on FAS activity there has not been performed so far. There is no available data concerning ACC activity in human hypothalamus. Thus, we investigated ACC and FAS (as well as other lipogenic enzymes) activities in human hypothalamus of subjects who died in car accidents. The results presented in this paper indicate that ACC and FAS activities are present in human hypothalamus and that these activities are 2- to 3-fold lower than in rat hypothalamus. Moreover, our data presented in this paper indicate that other lipogenic enzymes activities are also present in human hypothalamus. The activity of FAS, ACC and other lipogenic enzymes in human hypothalamus suggests that fatty acid synthesis actively occurs there. Therefore, it is likely, that in human this pathway may be relevant to hypothalamic functioning as food intake and energy expenditure regulator, similarly as it was suggested in rodents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.