Abstract

Microvascular endothelial cells (RFCs) cultured in two-dimensional (2D) cultures proliferate rapidly and exhibit an undifferentiated phenotype. Addition of transforming growth factor beta1 (TGFbeta1) increases fibronectin expression and inhibits proliferation. RFCs cultured in three-dimensional (3D) type I collagen gels proliferate slowly and are refractory to the anti-proliferative effects of TGF beta1. TGF beta1 promotes tube formation in 3D cultures. TGF beta1 increases fibronectin expression and urokinase plasminogen activator (uPA) activity and plasminogen activator inhibitor-1 (PAI-1) levels in 3D cultures. Since the TGF beta type I and II receptors have been reported to regulate different activities induced by TGF beta1, we compared the TGF beta receptor profiles on cells in 2D and 3D cultures. RFCs in 3D cultures exhibited a significant loss of cell surface type II receptor compared with cells in 2D cultures. The inhibitory effect of TGF beta1 on proliferation is suppressed in transfected 2D cultures expressing a truncated form of the type II receptor, while its stimulatory effect on fibronectin production is reduced in both 2D and 3D transfected cultures expressing a truncated form of the type I receptor. These data suggest that the type II receptor mediates the antiproliferative effect of TGF beta1 while the type I receptor mediates the matrix response of RFCs to TGF beta1 and demonstrate that changes in the matrix environment can modulate the surface expression of TGF beta receptors, altering the responsiveness of RFCs to TGF beta1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.