Abstract

Hepatitis C virus (HCV) often establishes a persistent infection that leads to chronic liver diseases. The viral core protein modulates various cellular activities involved in this process. We found two mutations, K23E and V31A, in the core gene of the transfected HCV JFH-1 genome, which had been replicated for a prolonged period. The mutant viruses escaped immunochemical detection by a core-specific antibody and demonstrated enhanced RNA replication and protein expression, compared to the parental virus. The mutant core proteins bound less tightly than the parental type core to the DEAD-box RNA helicase DDX3 and attenuated the TBK1-mediated activation of interferon-related promoters. These results suggest a mechanism by which the viruses adapt to attenuate cellular antiviral activity and to establish persistent infection. Structured summary of protein interactionsDDX3 and COREcolocalize by fluorescence microscopy (View Interaction: 1, 2, 3) DDX3physically interacts with CORE by two hybrid (View Interaction: 1, 2, 3) COREphysically interacts with DDX3 by pull down (View Interaction: 1, 2, 3)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.