Abstract

Citric acid (CA) is a green and safe food-grade crosslinking agent for starch, but its high crosslinking temperature limits its application. In this study, a “one-step” extrusion modification method based on Ca2+-esterification synergistic crosslinking was proposed for the preparation of high gel performance crosslinked starch at low temperatures (90 °C). The linear and nonlinear rheological properties of crosslinked starch were comprehensively characterized, and the enhancement effect of synergistic crosslinking reactions on starch gel properties was quantitatively studied. The results show that the elastic modulus of the synergistically crosslinked starch (SC-0.5Ca2+, G' = 3116 ± 36) was significantly increased by 879 % compared to the elastic modulus of starch without synergistically crosslinked modification (SC, G' = 318 ± 9). The elastic modulus of starch gels can be adjusted by changing the ion concentration. Nonlinear rheological Lissajous curve analysis results show that the synergistic crosslinked gel system has a stronger anti-deformation ability. In addition, the honeycomb porous structure and smaller pore size distribution of the synergistic crosslinked gels were characterized using scanning SEM. The XPS, FTIR and XRD results suggest that the synergistic crosslinking enhancement effect may involve various molecular forces such as electrostatic attraction, hydrogen bonding and ester bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call