Abstract

Three rice starches from indica (TNuS19), japonica (TNu67) and waxy (TCW70) were used as samples to investigate the water mobility, viscoelasticity and textural properties of starch gels using pulsed nuclear magnetic resonance (PNMR), dynamic rheometer and texture analyzer. The spin–spin relaxation time (T2), showed water mobility of starch gels was detected with starch concentrations 10–30%. Generally, the TNuS19 and TNu67 at ≥20% showed two components (T2a and T2b) in water mobility, where T2a and T2b related to solid-like and liquid-like water molecules in starch gels, respectively. However, the TCW70 over the concentrations examined had only T2b component, higher than those of corresponding TNuS19 and TNu67. The storage (G′) and loss (G″) moduli of starch gels were in the order of TNuS19 > TNu67 > TCW70. Texture analyzer analysis indicated that TNuS19 had higher hardness, stickiness and adhesiveness than did the TNu67 and TCW70, and changed significantly with the starch concentration increase. The value of T2b was highly correlated with physical properties of starch gels, especially with dynamic rheological parameters. It is suggested that amylose content may play a major role to influence the water mobility of starch gels which affects the specific viscoelasticity and textural properties of starch gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call