Abstract
The loop B3 of glycoside hydrolase family 7 (GH7) endoglucanases is confined into long and short types. TtCel7 is a thermophilic GH7 endoglucanase from Thermothelomyces thermophilus ATCC 42464 with a long loop B3. TtCel7 was distinct for the excellent thermostability (>30 % residual activity after 1-h incubation at 90 °C). The catalytic efficiency was reduced by removing the disulfide bond in loop B3 (C220A) and truncated the loop B3 (B3cut). However, B3cut exhibited improved thermostability, the remaining enzyme activity increased by 39 %–171 % compared toTtCel7 when treated at 70–90 °C for 1-h. Based on the analysis of molecular dynamics simulation, both loops B1 and A3 of B3cut swing toward the catalytic center, which contributed to the reduced cleft-space and increased structure-rigidity. Conversely, the deletion of disulfide bond resulted in a reduction of structural rigidity in C220A. Through structure-directed enzyme modulation, this study has identified two structural elements that are related to the catalysis and thermostability of TtCel7. The loop B3 of TtCel7 possibly stretches the catalytic pocket, thereby increases the openness of the catalytic tunnel and enhancing flexibility for efficient catalysis. Additionally, the disulfide bond within loop B3 serves to enhance structural stability and maintain a heightened level of activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.