Abstract
The impact of device operation condition and ambient moisture on the interface-type resistive switching (RS) characteristics of a non-stoichiometric polycrystalline tungsten oxide (WO3−x) based metal–insulator–metal device with an Au top electrode and a Pt bottom electrode has been investigated. The device exhibits rectification and stable bipolar RS characteristics without the need for any forming step, where the switching is primarily dominated by the Schottky type Au/WO3−x interface. DC conduction characteristics of the device have been investigated at different temperature, bias stress, and relative humidity conditions. Current conduction through the active layer has been found to be dominated by Schottky emission at low electric field and Poole–Frenkel emission at high electric field. An increase in current and a strong reduction in the rectification characteristic have been observed on subjecting the device to DC bias stress of appropriate polarity as well as increasing ambient moisture. Modification of the Schottky barrier due to defect redistribution when DC bias stress is applied and due to the dipoles induced at the Au/WO3−x interface by water molecules with increasing ambient moisture content have been discussed as a possible mechanism of the observed RS modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.