Abstract

AbstractWhile much effort has been made to characterize influenza A pdm09 virus (pH1N1), the flu that was responsible for the fourth influenza pandemic, there is a lack of study on the composition of bacteria that lead to secondary infection. In this study, we recruited pneumonia patients with and without pH1N1 infection and characterized their oropharyngeal microbiota by the unbiased high-throughput sequencing method. While there were no significant differences in common bacterial pneumonia-causative agents (Acinetobacter and Streptococcus species), previously unreported Pseudomonas species equipped with chemotaxis and flagellar assembly genes significantly increased (>20-fold) in the pH1N1-infected group. Bacillus and Ralstonia species that also increased significantly (5–10-fold) were also found to possess similar signaling and motility genes. In contrast, no such genes were found in oral commensal Prevotella, Veillonella and Neisseria species, which decreased significantly, or in either Acinetobacter or 10 out of 21 Streptococcus species, including Streptococcus pneumoniae. Our results support the notion that pH1N1 infection provides a niche for previously unnoticed potential respiratory pathogens that were able to access the lower respiratory tract with weakened immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call