Abstract

BackgroundHorizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. In this work, the DNA sequence surrounding folP in commensal Neisseria species was determined and compared to corresponding regions in pathogenic Neisseriae, in order to elucidate the potential for inter-species DNA transfer within this region.ResultsThe upstream region of folP displayed differences in gene order between species, including an insertion of a complete Correia element in Neisseria lactamica and an inversion of a larger genomic segment in Neisseria sicca, Neisseria subflava and Neisseria mucosa. The latter species also had DNA uptake signal sequences (DUS) in this region that were one base different from the DUS in pathogenic Neisseriae. Another interesting finding was evidence of a horizontal transfer event from Neisseria lactamica or Neisseria cinerea that introduced a novel folP allele to the meningococcal population.ConclusionGenetic recombination events immediately upstream of folP and horizontal transfer have resulted in sequence differences in the folP region between the Neisseria species. This variability could be a consequence of the selective pressure on this region exerted by the use of sulfonamide drugs.

Highlights

  • Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis

  • Horizontal transfer has for example contributed to the spread of resistance to penicillin in pathogenic Neisseriae, where the origin of the transforming DNA was traced to commensal Neisseria species [4]

  • Gene organization in commensal Neisseriae The sequence surrounding folP was determined for Neisseria subflava by sequencing 6.8 kb of the genome. (N. subflava was chosen because sulfonamide-resistant commensal Neisseriae found in healthy carriers were phenotypically characterized as being most related to this species [6])

Read more

Summary

Introduction

Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. Horizontal transfer has for example contributed to the spread of resistance to penicillin in pathogenic Neisseriae, where the origin of the transforming DNA was traced to commensal Neisseria species [4]. Sulfonamide resistance in some strains of Neisseria meningitidis (the meningococcus) has been acquired by horizontal transfer [5]. The intergenic regions are defined by dotted vertical lines and designated TC (tyrB-cyt5), DM (dedA-manB), MF (manB-folP) and FU (folP-upstream), respectively

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.