Abstract
The emergence of sliding ferroelectricity facilitates low-barrier ferroelectrics in two-dimensional materials, while limited electric polarizations impede practical applications. Herein, we propose an effective strategy to enlarge the polarization by introducing an intrinsic electric field, exemplified by Janus transition metal dichalcogenides (TMDs) with the first-principle calculations. The intrinsic electric field is introduced and regulated by leveraging the electronegativity differences among chalcogens. An improved polarization is achieved in the Janus TeMoS bilayer with a polarization of 1.18 pC/m, a 65% enhancement compared to normal TMD bilayers. Through differential charge density analysis, the inner mechanism is attributed to the effects of intrinsic electric fields on charge redistribution. Furthermore, the feasibility of polarization reversal is determined by evaluating switching barriers and the responses under an electric field. The provided proposal is applicable and available for broader systems and will pave the way for the development of novel electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.