Abstract

AbstractThis study highlights the distinct modulation of May–October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP), and North Atlantic (NATL) Ocean basins by tropical transbasin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large-scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency as a result of changes in basinwide vertical wind shear and sea surface temperatures, whereas the modulation in TC frequency by ENSO is primarily caused by a north–south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC interannual variability and could thus be helpful for seasonal TC forecasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call