Abstract

The present study investigated the role of muscle metaboreceptor activation on human thermoregulation by measuring core temperature thresholds and slopes for sweating and cutaneous vascular responses during passive heating associated with central and peripheral mechanisms. Six male and eight female subjects inserted their lower legs into hot water (43°C) while wearing a water perfusion suit on the upper body (34°C). One minute after immersion, an isometric handgrip exercise--40% of maximum voluntary contraction-was conducted for 1.5 min in both control and experimental conditions, while postexercise occlusion was performed in the experimental condition only for 9 min. The postexercise forearm occlusion during passive heating consistently stimulated muscle metaboreceptors, as implicated by significantly elevated mean arterial blood pressure throughout the experimental period (P <0.05). Stimulation of the forearm muscle metaboreceptors increased sweating and cutaneous vascular responses during passive heating, and was associated with significant reductions in esophageal temperature threshold of sweating and cutaneous vasodilation (Δ threshold, sweating: 0.33 ± 0.05 and 0.16 ± 0.04°C, cutaneous vascular conductance: 0.38 ± 0.08 and 0.16 ± 0.05°C for control and experimental groups, respectively, P < 0.05). The slopes of these responses were not different between the conditions. These results suggest that muscle metaboreceptor activation in the forearm accelerates sweating and cutaneous vasodilation during passive heating associated with a reduction in core temperature thresholds and may be related to central mechanisms controlling heat loss responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.