Abstract

Human milk synthesis is impacted by maternal diet, serum composition, and substrate uptake and synthesis by mammary epithelial cells (MECs). The milk of obese/high-fat-diet women has an increased fat content, which promote excess infant weight gain and the risk of childhood/adult obesity. Yet, the knowledge of milk synthesis regulation is limited, and there are no established approaches to modulate human milk composition. We established a 3-dimensional mouse MEC primary culture that recreates the milk production pathway and tested the effects of the major saturated fatty acid in human milk (palmitate) and a lipoprotein lipase inhibitor (orlistat) on triglyceride production. Positive immunostaining confirmed the presence of milk protein and intracellular lipid including milk globules in the cytoplasm and extracellular space. The treatment with palmitate activated "milk" production by MECs (β-casein) and the lipid pathway (as evident by increased protein and mRNA expression). Consistent with these cellular changes, there was increased secretion of milk protein and triglyceride in MEC "milk". The treatment with orlistat suppressed milk triglyceride production. Palmitate increased milk and lipid synthesis, partly via lipoprotein lipase activation. These findings demonstrate the ability to examine MEC pathways of milk production via both protein and mRNA and to modulate select pathways regulating milk composition in MEC culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call