Abstract

We investigated the effect of dexamethasone (DEX) on the disposition kinetics of cyclosporin A (CyA) and the mechanism of this drug interaction. Rats were treated with DEX (1 or 75 mg/kg per day, i.p.) once a day for 1–7 days, and the blood concentration of CyA was measured after an i.v. or p.o. dose of CyA (10 mg/kg) at 1.5 hr after the last DEX treatment. In rats treated with a low dose of DEX (1 mg/kg), the blood concentration of CyA after i.v. administration was unchanged compared with that of untreated rats, whereas the blood concentration after oral administration was significantly decreased, and this decrease was dependent on the duration of DEX administration. The total clearance (CL tot) of CyA was unchanged, but the bioavailability was significantly decreased to about one-third of that in DEX-untreated rats after 7 days of DEX treatment. At this time, the expression of mdr1a mRNA and P-gp in the liver and intestine was increased, whereas CYP3A2 was unaffected at both the mRNA and protein levels. In rats treated with a high dose of DEX (75 mg/kg), the blood concentration of CyA was significantly decreased after both i.v. and p.o. administrations compared with those of untreated rats. The bioavailability of CyA was decreased, and the CL tot was significantly increased. The P-gp and CYP3A2 in the liver and intestine were increased at both the mRNA and protein levels. Our results indicate that the drug interaction between CyA and DEX is a consequence of modulation of P-gp and CYP3A2 gene expression by DEX, with differential dose-dependence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call