Abstract

We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere–ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50 R J in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40 R J, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30 R J cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.