Abstract

AbstractA superposed epoch analysis is performed to investigate the relative impact of the solar wind/interplanetary magnetic field (IMF) on geomagnetic activity, auroral hemispheric power, and auroral morphology during corotating interaction regions (CIRs) events between 2002 and 2007, when auroral images from Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Imager were available. Four categories of CIRs have been compared. These were classified by the averaged IMF Bz and the time of maximum solar wind dynamic pressure around the CIR stream interface or onset time. It is found that during CIR events: (1) The peaks of auroral power and Kp were largely associated with dominant southward Bz, whereas auroral activity also became stronger with increases of solar wind speed, density, and dynamic pressure. (2) The percentage and absolute increases of auroral hemispheric power with solar wind speed were much greater under dominantly northward Bz conditions than under dominantly southward Bz conditions. (3) The enhancement of the auroral power and Kp with increasing solar wind speed followed the same pattern, for both dominantly southward and northward Bz conditions, regardless of the behavior of solar wind density and dynamic pressure. These results suggest that, during CIR events, southward Bz played the most critical role in determining geomagnetic and auroral activity, whereas solar wind speed was the next most important contributor. The solar wind dynamic pressure was the less important factor, as compared with Bz and solar wind speed. Relatively strong auroral precipitation energy flux (> ~3 mW/m2) occurred in a wider auroral oval region after the stream interface than before it for both dominantly northward and southward Bz conditions. These conditions enhanced the auroral hemispheric power after the stream interface. Intense auroral precipitation (> ~4 mW/m2) generally occurred widely at night under dominantly southward Bz conditions, but the location of this precipitation in the auroral oval was different when it was associated with different solar wind density and speed conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call