Abstract

The modulation of turbulence by sub-Kolmogorov particles has been thoroughly characterized in the literature, showing either enhancement or reduction of kinetic energy at small or large scale depending on the Stokes number and the mass loading. However, the impact of a third parameter, the number density of particles, has not been independently investigated. In the present work, we perform direct numerical simulations of decaying Homogeneous Isotropic Turbulence loaded with monodisperse sub-Kolmogorov particles, varying independently the Stokes number, the mass loading and the number density of particles. Like previous investigators, crossover and modulations of the fluid energy spectra are observed consistently with the change in Stokes number and mass loading. Additionally, DNS results show a clear impact of the particle number density, promoting the energy at small scales while reducing the energy at large scales. For high particle number density, the turbulence statistics and spectra become insensitive to the increase of this parameter, presenting a two-way asymptotic behavior. Our investigation identifies the energy transfer mechanisms, and highlights the differences between the influence of a highly concentrated disperse phase (high particle number density, limit behavior) and that of heterogeneous concentration fields (low particle number density). In particular, a measure of this heterogeneity is proposed and discussed which allows to identify specific regimes in the evolution of turbulence statistics and spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call