Abstract

The modulation of glucagon receptor (GR) expression and biological response was investigated in human embryonic kidney cell (HEK-293) clones permanently expressing the GR with different densities. The GR mRNA expression level in these clones was upregulated by cellular cAMP accumulation and presented a good correlation with both the protein expression level and the maximum number of glucagon binding sites. However, the determination of glucagon-induced cAMP accumulation in these cell lines revealed that the enhancement of receptor expression did not lead to a proportional increase in cAMP formation. Under these conditions, the maximum cAMP production induced by NaF and forskolin was not significantly different among selected clones, regardless of the receptor expression level. High receptor-expressing clones showed the greatest susceptibility for agonist-induced desensitization compared with clones with lower GR expression levels. The results of the present study suggest that the GR can recruit non-GR-specific desensitization mechanism(s). Furthermore, the partial inhibition or alteration of the overall cAMP synthesis pathway at the receptor level may be a necessary adaptive step for a cell in response to a massive increase in membrane receptor expression level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.