Abstract

FXYD10 is a 74 amino acid small protein which regulates the activity of shark Na,K-ATPase. The lipid dependence of this regulatory interaction of FXYD10 with shark Na,K-ATPase was investigated using reconstitution into DOPC/cholesterol liposomes with or without the replacement of 20 mol % DOPC with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither in the presence nor in the absence of anionic phospholipids did protein kinase phosphorylation of native FXYD10, which relieves the inhibition, affect such cross-linking. Together, this seems to indicate that phosphorylation involves only modest structural rearrangements between the cytoplasmic domain of FXYD10 and the Na,K-ATPase A-domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.