Abstract

Abstract Rainfall extremes have a large socioeconomic relevance for southern Vietnam. More than 30 million people live in this low-lying, flood-prone region in Southeast Asia. In this study the influence of the Madden–Julian oscillation (MJO) and convectively coupled equatorial waves on the modulation of daily rainfall during the rainy season (May–October) is evaluated and quantified using an extensive station database and the gridded Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) product for different phases of the equatorial waves. The MJO, Kelvin, and equatorial Rossby (ER) waves significantly modulate daily rainfall in Vietnam south of 16°N. The MJO shows the most coherent signals across the region, followed by ER waves, whose influence is strongest in central Vietnam; Kelvin waves only affect the southern parts of Vietnam. For all waves, the frequency of occurrence of intense daily rainfall larger than 25 mm is significantly enhanced during wet phases, whereas the magnitude of rainfall anomalies is related to the wave’s amplitude only in the MJO and ER cases. A novel wave interference diagram reveals strong positive interferences of dry and wet anomalies when the MJO occurs concurrently with Kelvin and ER waves. In terms of causes of rainfall anomalies, the waves modulate tropospheric moisture convergence over the region, but a strong influence on the depth of the monsoon flow and the vertical wind shear is discernible from radiosonde data only for the MJO. The results suggest new opportunities for submonthly prediction of dry and wet spells in Indochina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call