Abstract

The optical absorption spectra of curved graphene nanoribbons exhibit rich dependence on the magnitude and direction of the electric field. The wave functions have spatial symmetry originating from the equivalence of the two sublattices. There exists an optical selection rule caused by the special structure of the Hamiltonian matrix and the wave function spatial symmetry. An electric field may or may not disrupt such spatial symmetry depending on its direction and magnitude. Therefore, the optical selection rule can be controlled. In addition, the two-fold degeneracy of the optical absorption peaks is lifted by the electric field, and the variations of the absorption peak energies with the field are explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.