Abstract

BackgroundChloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl- accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl- currents. The intracellular Cl- concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl- currents to signal generation differs between individual afferent neurons, and whether the specific Cl- levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl- homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Cl- concentrations and on the expression levels of Cl- transporters in rat DRG neurons.ResultsWe developed an in vitro assay for testing how inflammatory mediators influence Cl- concentration and the expression of Cl- transporters. Intact DRGs were treated with 100 ng/ml NGF, 1.8 μM ATP, 0.9 μM bradykinin, and 1.4 μM PGE2 for 1–3 hours. Two-photon fluorescence lifetime imaging with the Cl--sensitive dye MQAE revealed an increase of the intracellular Cl- concentration within 2 hours of treatment. This effect coincided with enhanced phosphorylation of the Na+-K+-2Cl- cotransporter NKCC1, suggesting that an increased activity of that transporter caused the early rise of intracellular Cl- levels. Immunohistochemistry of NKCC1 and KCC2, the main neuronal Cl- importer and exporter, respectively, exposed an inverse regulation by the inflammatory mediators. While the NKCC1 immunosignal increased, that of KCC2 declined after 3 hours of treatment. In contrast, the mRNA levels of the two transporters did not change markedly during this time. These data demonstrate a fundamental transition in Cl- homeostasis toward a state of augmented Cl- accumulation, which is induced by a 1–3 hour treatment with inflammatory mediators.ConclusionOur findings indicate that inflammatory mediators impact on Cl- homeostasis in DRG neurons. Inflammatory mediators raise intracellular Cl- levels and, hence, the driving force for depolarizing Cl- efflux. These findings corroborate current concepts for the role of Cl- regulation in the generation of inflammatory hyperalgesia and allodynia. As the intracellular Cl- concentration rises in DRG neurons, afferent signals can be boosted by excitatory Cl- currents in the presynaptic terminals. Moreover, excitatory Cl- currents in peripheral sensory endings may also contribute to the generation or modulation of afferent signals, especially in inflamed tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call