Abstract

In this study, we prepared oligodeoxynucleotides (ODNs) containing the uridine base modified by an alkyl chain at the 5-position (AU) and characterized their aggregate formation, localization, and functions in cells. These experiments revealed that aggregates of these ODNs were readily transported into cells, but their localization was dependent upon the number of hydrophobic units. ODNs with one modified AU were transported in the cytosol, while ODNs with multiple AU modifications resulted in their accumulation at the cell membrane. We also examined the ability of the AU-modified ODNs to capture small molecules at the cell membrane and their cellular uptake. We positioned a thioflavin-T (ThT)-binding aptamer on the cell membrane by means of hybridization with ODNs with three AUs at the strand end. Treatment with ThT resulted in its efficient uptake into cells, due to the capture of the ThT by the aptamers on the cell membrane. Thus, we demonstrated the functionalization of cell membranes with modified ODNs and the efficient delivery of small molecules into the cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call