Abstract

Eugenol, a natural congener of capsaicin, is a routine analgesic agent in dentistry. We have recently demonstrated the inhibition of Ca(V)2.2 calcium channel and sodium channel currents to be molecular mechanisms underlying the analgesic effect of eugenol. We hypothesized that Ca(V)2.3 channels are also modulated by eugenol and investigated its mode of action using the whole-cell patch-clamp technique in a heterologous expression system. Eugenol inhibited calcium currents in the E52 cell line, stably expressing the human Ca(V)2.3 calcium channels, where TRPV1 is not endogenously expressed. The extent of current inhibition was not significantly different between naïve E52 cells and TRPV1-expressing E52 cells, suggesting no involvement of TRPV1. In contrast, TRPV1 activation is prerequisite for the inhibition of Ca(V)2.3 calcium channels by capsaicin. The results indicate that eugenol has mechanisms distinct from those of capsaicin for modulating Ca(V)2.3 channels. We suggest that inhibition of Ca(V)2.3 channels by eugenol might contribute to its analgesic effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call