Abstract

BackgroundAdenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. However, the molecular basis for the AK4 functions remained to be determined.MethodsHeLa cells were transiently transfected with an AK4 small interfering RNA (siRNA), an AK4 short hairpin RNA (shRNA) plasmid, a control shRNA plasmid, an AK4 expression vector, and a control expression vector to examine the effect of the AK4 expression on cell proliferation, sensitivity to anti-cancer drug, metabolome, gene expression, and mitochondrial activity.ResultsAK4 knockdown cells treated with short hairpin RNA increased ATP production and showed greater sensitivity to hypoxia and anti-cancer drug, cis-diamminedichloro-platinum (II) (CDDP). Subcutaneous grafting AK4 knockdown cells into nude mice revealed that the grafted cells exhibited both slower proliferation and reduced the tumor sizes in response to CDDP. AK4 knockdown cell showed a increased oxygen consumption rate with FCCP treatment, while AK4 overexpression lowered it. Metabolome analysis showed the increased levels of the tricarboxylic acid cycle intermediates, fumarate and malate in AK4 knockdown cells, while AK4 overexpression lowered them. Electron microscopy detected the increased mitochondrial numbers in AK4 knockdown cells. Microarray analysis detected the increased gene expression of two key enzymes in TCA cycle, succinate dehydrogenase A (SDHA) and oxoglutarate dehydrogenease L (OGDHL), which are components of SDH complex and OGDH complex, supporting the metabolomic results.ConclusionsWe found that AK4 was involved in hypoxia tolerance, resistance to anti-tumor drug, and the regulation of mitochondrial activity. These findings provide a new potential target for efficient anticancer therapies by controlling AK4 expression.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0322-2) contains supplementary material, which is available to authorized users.

Highlights

  • Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells

  • adenylate kinase 4 (AK4) expression was up-regulated by hypoxia and DFO There are several reports on the regulation of AK4 expression

  • AK4 knockdown increased sensitivity to anti-cancer drug For loss of function analysis, we used AK4 short hairpin RNA (shRNA) to produce a stable knockdown of AK4 expression

Read more

Summary

Introduction

Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. The molecular basis for the regulation of AK4-mediated ATP levels remains unclear, and the mechanisms how AK4 plays a role in oxidative stress and malignant transformation and regulates the mitochondria have not been elucidated. To address these questions, we carried out both in vitro and in vivo studies to investigate the effects of AK4 on cell growth, mitochondrial activity, metabolome, and gene expression

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call