Abstract

Iron availability to cells may be modified in the tumour microenvironment, which may be involved in treatment response. Iron availability affects the conversion of protoporphyrin IX to heme, which likely determines the efficacy of aminolevulinic acid-based photodynamic therapy (ALA-based PDT). We compared photoinactivation efficacy in three oesophageal cell lines in culture media differing in iron content, DMEM and RPMI 1640, and in RPMI 1640 supplemented with iron to understand the importance of iron presence for ALA-based PDT outcome. ALA-based PDT was more efficacious in DMEM than in RPMI 1640 in all tested cell lines. Consistently, the highest protoporphyrin IX fluorescence signals, indicating the highest level of protoporphyrin IX production, were detected from cell colonies incubated in DMEM compared to those incubated in RPMI 1640 irrespective of iron presence. Components in the culture media other than iron ions are likely to be responsible for the observed differences in two culture media. Nevertheless, iron supplementation to RPMI 1640 showed that the presence of ferric ions in the concentration range 0–8 mg/l affected ALA-based PDT efficacy in a cell type-dependent manner. In poorly differentiated carcinoma cells, the increased efficacy of ALA-induced photoinactivation in the presence of 0.1 mg/l of supplemented iron was found. At the same iron concentration, the slightly different mitochondrial potential at no modifications of the iron labile pool was observed. The efficacy of ALA-based PDT in vitro depends on the choice of culture medium and the presence of iron ions in culture medium depending on intrinsic properties of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call