Abstract
The influence of the electromagnetic field (EMF) on the corrosion of structural carbon steel in a 3% aqueous solution of sodium chloride in the presence of CO2 was studied. It is shown that the EMF increases the corrosion rate of steel by 1.13 times in a 3% aqueous solution of NaCl in the presence of CO2. When Ca2+ ions are added to the solution, the corrosion rate of steel decreases under the influence of an electromagnetic field. It is assumed that the formation of CaCO3 in the near-surface layer of the solution and its adsorption on the metal surface prevents the development of corrosion. The influence of the electromagnetic field generated in the frequency range from 100 to 200 kHz on the crystallization of CaCO3 from supersaturated aqueous solutions on the model system CaCl2 – NaHCO3 – FeSO4 is studied. It was found that Fe2+, rather than EMF, has a more significant effect on salt deposition. The efficiency of the effect of Fe2+ on the inhibition of salt deposition in the model of mineralized water CaCl2-NaHCO3 is 11.5% higher than when exposed to EMF. During the crystallization of CaCO3, the predominant formation of aragonite is observed. In the presence of iron ions and under the influence of EMF, there was a decrease in the formation of aragonite and an increase in the formation of calcite and vaterite. Keywords: electromagnetic field; corrosion; carbon steel; iron ions; scale deposition; crystallization; calcium carbonate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have