Abstract
The modulational instability (MI) process is exclusively studied in a two-component Bose-Einstein condensate (BEC) which includes Rashba-Dresselhaus (RD) spin-orbit (SO) and helicoidal SO couplings. A generalized set of two-dimensional (2D) Gross-Pitaevskii (GP) equations is derived. The tunability of the helicoidal gauge potential is exploited to address BECs dynamics in a square lattice. The MI growth rate is derived, and parametric analyses of MI show the dependence of the instability on interatomic interaction strengths, the RD SO coupling, and helicoidal SO coupling, which combines the gauge amplitude and the helicoidal gauge potential. Direct numerical simulations are carried out to confirm the analytical predictions. Trains of solitons are obtained, and their behaviors are debated when the RD SO parameters are varied under different combinations between the gauge amplitude and the helicoidal gauge potential. The latter gives a potential way to manipulate the trapping capacities of the proposed BEC model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.