Abstract

The nonlinear dynamics induced by the modulation instability (MI) of a binary mixture in an atomic Bose-Einstein condensate (BEC) is investigated theoretically under the joint effects of higher-order residual nonlinearities and helicoidal spin-orbit (SO) coupling in a regime of unbalanced chemical potential. The analysis relies on a system of modified coupled Gross-Pitaevskii equationson which the linear stability analysis of plane-wave solutions is performed, from which an expression of the MI gain is obtained. A parametric analysis of regions of instability is carried out, where effects originating from the higher-order interactions and the helicoidal spin-orbit coupling are confronted under different combinations of the signs of the intra- and intercomponent interaction strengths. Direct numerical calculations on the generic model support our analytical predictions and show that the higher-order interspecies interaction and the SO coupling can balance each other suitably for stability to take place. Mainly, it is found that the residual nonlinearity preserves and reinforces the stability of miscible pairs of condensates with SO coupling. Additionally, when a miscible binary mixture of condensates with SO coupling is modulationally unstable, the presence of residual nonlinearity may help soften such instability. Our results finally suggest that MI-induced formation of stable solitons in mixtures of BECs with two-body attraction may be preserved by the residual nonlinearity even though the latter enhances the instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.