Abstract
AbstractThe reactivity and selectivity of a transition metal catalyst is intimately related to its ligand‐sphere geometry, and, in many cases, the ideal ligand geometry for one step of a catalytic cycle is poorly matched to the ideal ligand geometry for another. For this reason, methods for reversibly modulating ligand geometry on the time scale of catalytic turnover or monomer enchainment are highly desirable. Mechanical force represents a heretofore untapped approach to modulate catalyst geometry and/or reactivity, with the potential to do so on the timescale of catalytic turnover or monomer enchainment. Macroscopic mechanical forces are large, directional and localized to an extent that differentiates them from other forms of energy input such as heat or light. In this Concept, we describe our efforts to address the fundamental challenges associated with force‐modulated transition metal catalysis by employing molecular force probe ligands comprising a stiff stilbene photoswitch tethered to rotationally flexible biaryl bisphosphine ligand. Our efforts to date include the modulation of catalytic activity through force‐mediated ligand perturbations, quantification of the force‐coupled ligand effects on the energetics of elementary organometallic transformations, and evaluation of the mechanisms of force transduction in these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.