Abstract

Five different types of β-diketiminate ligands, bearing electron-donating to strongly electron-withdrawing substituents, were synthesized and used in the synthesis of Cp* ruthenium complexes (Cp* = η5-C5Me5). One series consists of complexes with a covalent RuIII–Cl bond, and the other series features a reduced RuII center, where the chloride is abstracted by treatment of the corresponding RuIII compounds with Zn or Mg. All compounds were characterized by single-crystal X-ray diffraction, UV–visible spectroscopy, and cyclic voltammetry. In the case of RuII complexes, solution NMR techniques provided key information regarding the electronic and structural differences induced by the different β-diketiminate ligands employed. Capitalizing on the facile reduction–oxidation cycle of the Cp* ruthenium β-diketiminato complexes, catalytic atom transfer radical addition (ATRA) and cyclization (ATRC) reactions were performed on relevant substrates. The turnover rates are strongly dependent on the type of β-diketimi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call