Abstract

Vibronic coupling has been proposed to play a decisive role in promoting ultrafast singlet fission (SF), the conversion of a singlet exciton into two triplet excitons. Its inherent complexity is challenging to explore, both from a theoretical and an experimental point of view, due to the variety of potentially relevant vibrational modes. Here, we report a study on blends of the prototypical SF chromophore pentacene in which we engineer the polarizability of the molecular environment to scan the energy of the excited singlet state (S1) continuously over a narrow energy range, covering vibrational sublevels of the triplet-pair state (1(TT)). Using femtosecond transient absorption spectroscopy, we probe the dependence of the SF rate on energetic resonance between vibronic states and, by comparison with simulation, identify vibrational modes near 1150 cm-1 as key in facilitating ultrafast SF in pentacene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.