Abstract

Biochemical reaction networks adapt to environmental conditions by sensing chemical or physical stimuli and using tightly controlled mechanisms. While most signals come from molecules, many cells can also sense and respond to light. Among the biomolecular structures that enable light sensing, we selected a light-oxygen-voltage (LOV) domain in a previous study that tested the engineering of novel regulatory mechanisms into a nucleic acid polymerase. In this follow-up study, we studied the activities of previously selected variants in kinetic detail, and we generated additional LOV-polymerase fusion variants based on further insertion criteria. Our results provide mechanistic insights into how LOV domain insertion influences polymerase activity in a light-responsive manner: All active and photoresponsive enzyme variants studied by us to date were partially inhibited (i. e., "turned off") after irradiation with blue light at 470 nm, which can be explained by specific obstructions of the polymerase entry or exit structures (substrate entry channels or product exit channels, or both). Although the effects observed are moderate, we anticipate further engineering strategies that could be used to improve the extent of switchability and possibly to develop a "turn-on mode" insertion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.