Abstract
Inorganic boric acid (BA) is generally not considered an efficient afterglow material, and several groups have reported its extremely weak room-temperature phosphorescence (RTP) in the blue spectral region. It is discovered that heat treatment of BA results in increased afterglow intensity (27-fold increase) and prolonged emission lifetime (from 0.83 to 1.59 s), attributed to enhanced through-space conjugation (TSC) of BA. The afterglow intensity of BA can be increased further (≈415 folds) by introducing p-hydroxybenzoic acid (PHA), which contains a conjugated molecular motif, to further promote the TSC of the BA system. This combination results in the production of afterglow materials with a photoluminescence quantum yield of 83.8% and an emission lifetime of 2.01 s. In addition, a tunable multicolor afterglow in the 420-490nm range is achieved owing to the enhancement of the RTP and thermally activated delayed fluorescence of PHA, where BA exerts a confinement effect on the guest molecules. Thus, this study demonstrates promising afterglow materials produced from extremely abundant and simple precursor materials for various applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have