Abstract

First-principles calculations reveal that upon adsorption to the Cu(111) surface, the C–C single bonds within the p-benzoquinonemonoimine zwitterion (ZI) contract by about 6%. A detailed analysis reveals that the bond shortening is primarily a result of backdonation from Cu orbitals of s and d symmetry to the lowest unoccupied orbital (LUMO) of the ZI. This LUMO is π*-antibonding across the molecule and π-bonding across the C–C bond that shortens. We illustrate that the level alignment between the Fermi level of the surface and the frontier molecular orbitals of the ZI, the topology of the LUMO, and the distance between the substrate and the adsorbate are important factors enabling bond strengthening via backdonation. An extended transition state–natural orbitals for chemical valence (ETS-NOCV) analysis is applied to molecular models for this system, and it confirms that the surface → LUMO backdonation on Cu(111) is larger than on Ag(111) and Au(111).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.