Abstract
Selective attention is a basic process required to maintain goal-directed behavior by appropriately responding to target stimuli and suppressing reactions to non-target stimuli. It has been proposed that auditory selective attention is linked to the activity of the locus coeruleus-norepinergic (LC-NE) system and a large-scale fronto-parietal cortical network, but there is still sparse causal evidence for these assumptions. By applying transcutaneous vagal nerve stimulation (tVNS) and transcranial random noise stimulation (tRNS) over the frontal cortex, we systematically assessed the involvement of these subcortical and cortical components in the regulation of auditory selective attention. Using a single-blinded, sham-controlled, within-subject design we analyzed online effects of tVNS and tRNS in 20 healthy participants during an auditory oddball paradigm. We show significant stimulation-dependent modulations of auditory selective attention on the behavioral and electrophysiological level. Compared to sham, tVNS increased the P3 amplitude, while tRNS reduced the reaction time to target stimuli. Moreover, both techniques reduced the P3 latency. Our data provide evidence for the functional relevance of the subcortical NE system in the regulation of neural resources that allows a phasic response to incoming target stimuli. They indicate that frontal cortex structures are crucially involved in the successful evaluation of the respective information. Moreover, our results are in favor of the LC-P3 hypothesis claiming the vital role of the NE system in auditory selective attention and in the generation of the P3. Of note, the effects of tVNS on auditory selective attention are comparable with those evoked by pharmacological interventions and invasive vagal nerve stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.