Abstract

Random Boolean networks (RBNs) have been a popular model of genetic regulatory networks for more than four decades. However, most RBN studies have been made with random topologies, while real regulatory networks have been found to be modular. In this work, we extend classical RBNs to define modular RBNs. Statistical experiments and analytical results show that modularity has a strong effect on the properties of RBNs. In particular, modular RBNs have more attractors, and are closer to criticality when chaotic dynamics would be expected, than classical RBNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.