Abstract
Random boolean networks (RBN) have been proposed more than thirty years ago as models of genetic regulatory networks. Recent studies on the perturbation in gene expression levels induced by the knock-out (i.e. silencing) of single genes have shown that simple RBN models give rise to a distribution of the size of the perturbations which is very similar in different model network realizations, and is also very similar to the one actually found in experimental data concerning a unicellular organism (S.cerevisiae). In this paper we present further results, based upon the same set of experiments, concerning the correlation between different perturbations. We compare actual data from S. cerevisiae with the results of simulations concerning RBN models with more than 6000 nodes, and comment on the usefulness and limitations of RBN models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.