Abstract

To effectively isolate low-frequency vibrations, we present a rigid–flexible coupling quasi-zero-stiffness (QZS) vibration isolator with high-static-low-dynamic stiffness (HSLDS) characteristics. Specifically, the QZS isolator is realized by the development of a compliant constant-force mechanism, formed by parallelly combining a diamond-shape mechanism and a nonlinear bi-stable beam in parallel. To evaluate performance of the QZS isolator, we derived an analytical force–displacement model and dynamic model based on pseudo-rigid body method and Lagrange’s equations. Then, finite element analysis was performed in Workbench to verify theoretical analysis and identify the optimal design parameters. Furthermore, the dynamic responses of the QZS isolator are established with the harmonic balance method. Finally, the relationships among displacement transmissibility and factors including damping, BSB, payload mass, and material property are discussed. The results have shown that our QZS isolator design can effectively isolate vibrations in low frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call