Abstract
Existing quasi-zero stiffness (QZS) isolators are reviewed. In terms of their advantages, a novel X-shape QZS isolator combined with the cam-roller-spring mechanism (CRSM) is proposed. Different from the existing X-shape isolators, oblique springs are used to enhance the negative stiffness of the system. Meanwhile, the CRSM is used to eliminate the gravity of the loading mass, while the X-shape structure leaves its static position. The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes. It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism. The X-shape has a strong capacity of loading mass, while the CRSM can achieve a designed restoring force at any position. The proposed isolator combines all these advantages together. Based on the harmonic balance method (HBM) and the simulation, the displacement transmissibilities of the proposed isolator, the X-shape isolators just with oblique springs, and the X-shape isolators in the traditional form are studied. The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility. However, it still has some disadvantages similar to the existing QZS isolators. This means that its parameters should be designed carefully so as to avoid becoming a bistable system, in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.