Abstract

Within the algebraic setting of quantum field theory, a condition is given which implies that the intersection of algebras generated by field operators localized in wedge-shaped regions of the two-dimensional Minkowski space is non-trivial; in particular, there exist compactly localized operators in such theories which can be interpreted as local observables. The condition is based on spectral (nuclearity) properties of the modular operators affiliated with wedge algebras and the vacuum state and is of interest in the algebraic approach to the formfactor program, initiated by Schroer. It is illustrated here in a simple class of examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.