Abstract

The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. Employing the algebraic framework of quantum field theory, it is shown under which conditions an algebra of observables localized in a wedge-shaped region of spacetime can be used to construct model theories. A crucial input in this context is the modular nuclearity condition for wedge algebras, which implies the existence of local observables.As an application of the new method, a rigorous construction of a large family of models with factorizing S-matrices is obtained. In an inverse scattering approach, a given factorizing scattering operator is used to define certain semi-localized Wightman fields associated to it. With the help of these fields, a wedge algebra can be defined, which determines the local observable content of a well-defined quantum field theory. In this approach, the modular nuclearity condition translates to certain analyticity and boundedness conditions on the formfactors of wedge-local observables. These conditions are shown to hold for a large class of underlying S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples.The so constructed models are investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the underlying S-matrices, and a proof of asymptotic completeness for these models is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.