Abstract
Recently, concepts of both ac and dc microgrids have been proposed for future energy systems. A novel converter topology which has three ports: 12 kV ac, 22 kV dc and 400 V dc for future hybrid ac and dc microgrid systems is presented in this paper. Each port has the capability of bi-directional power flow which is required in future hybrid ac and dc microgrids. The 400 V dc bus, which is connected to distributed energy resources, injects/draws power to/from both the ac grid and the dc grid through solid-state transformers. The topology avoids the use of line-frequency transformers which are considered to be expensive and bulky. Because the hybrid converter is connected to both the ac grid and the dc grid, enhanced reliability is achieved. A modular design of the sub-module of the modular multilevel converter is proposed for reducing the sub-module failure probability. Extensive time-domain simulations using Matlab/Simulink™ are presented demonstrating the feasibility of the proposed topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.