Abstract
AbstractThe Epsilometer (“epsi”) is a small (7 cm diameter × 30 cm long), low-power (0.15 W), and extremely modular microstructure package measuring thermal and kinetic energy dissipation rates, χ and ε. Both the shear probes and FP07 temperature sensors are fabricated in house following techniques developed by Michael Gregg at the Applied Physics Laboratory/University of Washington (APL/UW). Sampling eight channels (two shear, two temperature, three-axis accelerometer, and a spare for future sensors) at 24 bit precision and 325 Hz, the system can be deployed in standalone mode (battery power and recording to microSD cards) for deployment on autonomous vehicles, wave powered profilers, or it can be used with dropping body termed the “epsi-fish” for profiling from boats, autonomous surface craft or ships with electric fishing reels or other simple winches. The epsi-fish can also be used in real-time mode with the Scripps “fast CTD” winch for fully streaming, altimeter-equipped, line-powered, rapid-repeating, near-bottom shipboard profiles to 2200 m. Because this winch has a 25 ft (~7.6 m) boom deployable outboard from the ship, contamination by ship wake is reduced one to two orders of magnitude in the upper 10–15 m. The noise floor of ε profiles from the epsi-fish is ~10−10 W kg−1. This paper describes the fabrication, electronics, and characteristics of the system, and documents its performance compared to its predecessor, the APL/UW Modular Microstructure Profiler (MMP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.