Abstract

It is widely assumed that neural control of movement is carried out by the a motor system sufficiently. The role of the γ motor system in movement and posture has not been adequately addressed in motor control studies. Here, we propose a modular control model for movement and posture based on propriospinal neuronal (PN) network and spinal α-γ motor system. In the modular control model, the a and γ motor commands are divided into static and dynamic functions. The static commands are specified by the higher center of brain for posture control, and the dynamic commands for movement generation, respectively. Centrally planned kinematics based on the minimal jerk criterion is conveyed to the periphery via the γ motor system, while centrally programmed bi-phasic burst pattern of muscle activation is relayed to a pair of antagonistic muscles through the a motor system via the PN. Results of simulation showed that elbow kinematics and biceps and triceps activations displayed the similar kinematic and EMG features of fast reaching movement in human. This suggests a hypothesis that the α-γ motor systems can achieve modular control of movement and posture in parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.