Abstract

This paper treats the problem of estimating positive parameters restricted to a polyhedral convex cone which includes typical order restrictions, such as simple order, tree order and umbrella order restrictions. In this paper, two methods are used to show the improvement of order-preserving estimators over crude non-order-preserving estimators without any assumption on underlying distributions. One is to use Fenchel’s duality theorem, and then the superiority of the isotonic regression estimator is established under the general restriction to polyhedral convex cones. The use of the Abel identity is the other method, and we can derive a class of improved estimators which includes order-statistics-based estimators in the typical order restrictions. When the underlying distributions are scale families, the unbiased estimators and their order-restricted estimators are shown to be minimax. The minimaxity of the restrictedly generalized Bayes estimator against the prior over the restricted space is also demonstrated in the two dimensional case. Finally, some examples and multivariate extensions are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.