Abstract
Based on Venturini method, it is in favor of the modulation technique for controlling the matrix converter due to only use of the comparison between the duty cycles in time domain and the triangular carrier wave for generating the gating signals and the achievable voltage ratio between fundamental output magnitude and fundamental input magnitude to 0.866. However, even with simple modulation method and achieving maximum fundamental output magnitude, the possible input voltage unbalance conditions accordingly influence on the output performances (more reduction and distortion). Thus, a control strategy based on Venturini method is presented in this paper, in order to solve the impacts of unbalanced input voltage conditions on the matrix converter performances. Conceptually, this strategy is done by modifying the mathematical model for controlling the modulating waves to satisfy the desirable feature, as generated in the event of normal situation. Up to this approach, it can support either single-phase condition or two-phase condition. Performance of the proposed control strategy was verified by the simplified simulation model in the MATLAB/Simulink software. It is clearly shown that the matrix converter can be controlled for regulating the balanced output voltages with showing good steady-state and dynamic operations without the energy storage devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have