Abstract

The cortical auditory evoked potential (CAEP) is a change in neural activity in response to sound, and is of interest for audiological assessment of infants, especially those who use hearing aids. Within this population, CAEP waveforms are known to vary substantially across individuals, which makes detecting the CAEP through visual inspection a challenging task. It also means that some of the best automated CAEP detection methods used in adults are probably not suitable for this population. This study therefore evaluates and optimizes the performance of new and existing methods for aided (i.e., the stimuli are presented through subjects' hearing aid(s)) CAEP detection in infants with hearing loss. Methods include the conventional Hotellings T2 test, various modified q-sample statistics, and two novel variants of T2 statistics, which were designed to exploit the correlation structure underlying the data. Various additional methods from the literature were also evaluated, including the previously best-performing methods for adult CAEP detection. Data for the assessment consisted of aided CAEPs recorded from 59 infant hearing aid users with mild to profound bilateral hearing loss, and simulated signals. The highest test sensitivities were observed for the modified T2 statistics, followed by the modified q-sample statistics, and lastly by the conventional Hotelling's T2 test, which showed low detection rates for ensemble sizes <80 epochs. The high test sensitivities at small ensemble sizes observed for the modified T2 and q-sample statistics are especially relevant for infant testing, as the time available for data collection tends to be limited in this population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.