Abstract

Closed form expressions for the low cycle and high cycle fatigue crack growth lives have been derived for the randomly-planar oriented short-fiber reinforced metal matrix composites under the total strain-controlled conditions. The modeling was based on fatigue-fracture mechanics theory under both the small scale and the large scale yielding conditions. The modified shear lag theory was considered to describe the effect of yielding strength. The present model is essentially a crack growth model because crack initiation period in short fiber reinforced metal matrix composite is much shorter; hence, not assumed to play a dominant role in the calculation of fatigue crack growth life. The effects of short-fiber volume fraction (Vf), cyclic strain hardening exponent (n′) and cyclic strain hardening coefficient (K′) on the fatigue crack propagation life are analyzed for aluminum based SFMMCs at different levels of cyclic plastic strain values. It is observed that the influence of fatigue crack growth resistance increases with increase in cyclic strain hardening exponent (n′) and decreases when volume fraction (Vf) or cyclic strain hardening coefficient (K′) increases. The present MSL theory based fatigue crack growth life prediction model is an alternative of modified rule of mixture and strengthening factor models. The predicted fatigue life for SFMMC shows good agreement with the experimental data for the low cycle and high cycle fatigue applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call